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Abstract—Most employees started to work from
home due to social-distancing measures imposed by
public health authorities to help prevent workplace
exposure at the beginning of COVID-19 pandemic.
As a result, gridlocked roads emptied out, and the
congestion declined very sharply [1] . In order to
predict accident-induced congestion severity levels, I
utilized a huge US accident dataset of 1.5 million
observations. Next, I predicted the accident severity
classes using Random Forest (RF) Bootstrap Ag-
gregation, and heuristic Support Vector Machine
(SVM) - one-vs-one and one-vs-rest - after feature
selection analysis (correlation coefficients and mutual
information criteria). I then assessed the performance
of classifiers through credible interval determination
and binomial significance tests. The RF (bootstrap ag-
gregation) outperforms both the base model (logistic
regression) [2] , and heuristic SVM in terms of overall
prediction accuracy, and confusion matrix metric.
The study also demonstrates that traffic accident-
induced congestion has been less severe than pre-

pandemic levels.

I. DATA

The data ‘US-Accidents’ is a countrywide traffic
accidents dataset that covers 49 states of the US

[3][4]. The dataset was collected over a period of 4

years (2016-2020) using multiple APIs that stream
real time traffic events captured by a variety of
entities such as the US Department of Transporta-
tion, and law enforcement agencies through traffic
cameras and traffic sensors.

The original dataset has 47 attributes that can
be categorized under traffic (severity, accident start
time, accident end time & distance affected); geog-
raphy (street, city, county, zip code, state); weather
(temperature, wind, humidity, pressure, and precip-
itation); Point of Interest (POI) such as cafes and
train stations; and time of the day (sunrise, sunset,
civil twilight, nautical twilight, and astronomical
twilight).

In this study, accident-induced congestion sever-
ity classes (low:2, medium:3 & high:4) were the
target variable while the rest of variables were used
as feature variables. After encoding all categorical
variables into one-hot numeric array, I generated

207 variables for subsequent feature selection.

II. FEATURE SELECTION
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I implemented a feature selection method to

reduce the number of features in *US-Accidents’
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Fig. 1. The Process of constructing US-Accidents Dataset[3]

dataset before predicting accident severity classes.
In order to reduce the computational cost of pre-
dictions, and improve the performance of the clas-
sifiers, I used a statistical-based feature selection
method that involves understanding the relationship
between each feature and the target variable. I
selected the features that had the strongest rela-
tionship with the target variable based on Pearson’s
Correlation matrix and mutual information (infor-

mation gain) from the field of information theory.

A. Correlation Matrix

I used Pearson’s Correlation method for the
900,000 observations retained after the data cleanup
procedure explained in [2] to understand the rela-
tionship among numerical features. I selected the
predictor features using the following Pearson’s

correlation threshold:

X = {X such that |corr(Xg,y))| > 0.05

where k € {1,2,3,--- ,K}}
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B. Mutual Information

While Pearson’s Correlation coefficient can
quantify linear relationships, it fails to describe
the dependence among variables that are related
in a nonlinear sense. Therefore, I used information
theory concepts like mutual information to explain
the dependence among variables.

Let (X,Y) be a pair of random variables with
values over the X' x ). Let Pxy be the joint
distribution and Py and Py be the marginal dis-
tributions. Mutual information is a measure of
dependence that quantifies the statistical distance
between the joint distribution of supposedly depen-
dent variables and the product of their marginals,
hence quantifying the mutual dependence between
two variables. The formula for mutual information

is given below:

I(X;Y) =Dk (Pxy||Px ® Py)

Finally, I selected 29 features that share high
mutual dependence with the target variable for

predictive modeling.

IIT. MODELS
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A. Random Forest [Bootstrap Aggregation]

Random Forest (bootstrap aggregation or bag-
ging) is ensemble machine learning algorithm that

is superior to bagged decision trees. I carried out



sampling with replacement to reduce the variance
of the forest (multiple decision trees) without in-
creasing the bias. The RF algorithm showed better
performance with 0.647 than logistic regression
with 0.589, SVM (one-vs-one) with 0.54, and SVM
(one-vs-rest) with 0.54. It also classified accidents
more accurately than logistic regression classifier

as shown in the figures below.

Logistic Regression

Random Forest. Bootstrap Aggregation

Severity Class (Predicted)

Severity Class (Predicted)

Fig. 2. Random forest versus base model (logistic regression)

B. Support Vector Machine [one-vs-one and one-

vs-rest]

Support Vector Machines (SVM) are designed
for binary classification problems. Therefore to
overcome the inherently binary nature of SVM
algorithm, heuristic methods (one-vs-one and one-
vs-rest) are used to split up multi-class [accident
severity classes: low(2), medium (3), high (4)]
into different binary classification problem. Unlike
one-vs-rest, one-vs-one splits the dataset into one
dataset for each class versus every other class. Both
heuristic SVM (one-vs-one and one-vs-rest) meth-
ods have achieved an overall accuracy of 0.554, and
performed poorly in comparison to RF and base

model (logistic regression) [2].
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IV. STATISTICAL TESTS AND ALGORITHM

COMPARISON
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A. Credible Interval Determination

I computed the credible intervals of test accuracy
sampled from beta distribution (1000 samples) for
all classifiers.The 95% credible interval for test
accuracy is 60% to 1.2% for all classifiers. This
shows that the central portion of the posterior
distribution contains 95% of scores between these
two values. I also determined credible intervals for
the overall accuracy of producer’s accuracy of each
severity class classified by all algorithms: logistic
regression (base model) with 60% to 1.17%, RF
(bootstrap aggregation) with 65% to 1.18%, RF
(AdaBoost) with 66% to 1.2%, and neural network
(3 hidden layers and 50 hidden units) with 63% to
1.24%. 1t is demonstrated that RF (AdaBoost) has

the best overall accuracy.

B. Binomial Significance Test

Another statistical test based on target predictions
for independent test sets is binomial significance
test. Classifiers are compared to check if a new
classifier is better than the old one. I ran acci-
dent severity classifiers on a test set to compare
their accuracy scores. The following results show
the probability that the classifier B is better than

classifier A.



TABLE I

PROBABILITY THAT CLASSIFIER B (ROWS) IS BETTER THAN CLASSIFIER A (COLUMNS). NEURAL NETWORK (3 HIDDEN
LAYERS & 50 HIDDEN UNITS)

Logistic
Logistic Nan 0
Random Forest [BA] 1.0 Nan
Random Forest [AdaBoost] 1.0 0.997
Neural Network 1.0 0.033

V. DISCUSSION AND CONCLUSION
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Two machine learning algorithms: I developed
Random Forest (Bootstrap Aggregation) and heuris-
tic Support Vector Machines (one-vs-one & one-
vs-rest) based on feature selection analysis to pre-
dict accident-induced congestion severity classes in
49 U.S. states. Since the target variable (severity)
has imbalanced classes, confusion matrix for each
classifier is considered a more reliable evaluation
metric. In addition, a boolean ’pre-pandemic’ that
I used to identify traffic accidents before and after
February 2020 demonstrated that accident-induced
congestion has been less severe than pre-pandemic
levels. The study contributes to both methodologi-
cal frameworks for predicting imbalanced classes,
and the literature on the effect of COVID-19 pan-

demic on urban transportation networks.
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APPENDIX

Logistic Regression

Test Accuracy
Beta Distribution: a = 3570.0, b = 2490.0

Probabiity Densicy

o 06
st Accuracy

Overall Accuracy: ©.589

User's Accuracy: [©.566 ©.57 ©.631]
Producer's Accuracy: [@.545 0.581 @.642]
Kappa Coefficient: ©.383748

Random Forest w/Bagging

Test Accuracy:
Beta Distribution: a = 3923.0, b = 2137.0

6
ot Aceurscy

Overall Accuracy: ©.647

User's Accuracy: [@.569 ©.782 ©.781]
Producer's Accuracy: [8.687 ©.575 @.679]
Kappa Coefficient: ©.47@625

Fig. 3. Random forest versus base model (logistic regression)
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Fig. 4. Support Vector Machines (one-vs-one one-vs-rest)

Logistic Regression: Pre-Covid

80
3

= 700
H 00
g4 00
> 00
T

H 300

200

100
3 4 2
Severity Class (Actual)

Fig. 5.

Random Forest: Bootstrap Aggregation: Pre-Covid
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Pre-Covid base model (logistic regression) versus

Random Forest (bootstrap aggregation)

SVM: Pre-Covid: One vs All
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Fig. 6. Pre-Covid Support Vector Machine (one-vs-one one-

vs-rest)
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Logistic Regression: Post-Covid
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Fig. 7. During-Covid base model (Logistic Regression) versus
Random Forest (Bootstrap Aggregation)
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During-Covid Support Vector Machine (one-vs-one

Logistic Rearession
Credible interval for producer's accuracy

Class: 2 Credible Interval: mean' 0.7541972916086334 +/- 0.01122717947203633
Class: 3 Gredible Interval: mean: 0.7331852481553098 +/- 0.01100852160640958
Class: 4 Credible Interval mean: 0.7138947601164852 +/- 0.012037937059589887

Credible interval for overall accuracy mean: 0.B0DB344797015282 +/- 0.01179185639264823

Random Forest! Bootstrap Agaregation
Credible interval for producer's accuracy

Class: 2 Credible Interval mean: 0.79BB4B1171571148 +/- 0.008750144365183067
Class: 3 Gredible Interval: mean: 0.7856698742698303 +/- 0.010832972581116374
Class: 4 Credible Interval mean: 0.7246280802706782 +/- 0.011797257212218804

Credible interval for overall accuracy mean: 0.B334376788407688 +/- 0.011828328708342681

Random Forest: AdaBoost
Credible interval for producer's accuracy

Class: 2 Credible Interval: mean' 0.8049196608964672 +/- 0.010086398166515333
Class: 3 Gredible Interval: mean: 0.77512438387612 +/- 0.01048705575034925
Class: 4 Credible Interval mean: 0.7488166617444037 +/- 0.011168520451588004

Credible interval for overall accuracy mean: 0.B833243373388463 +/- 0.012022175792797185

Neural Network: 3 hidden lavers, 50 hidden units
Credible interval for producer's accuracy

Class: 2 Credible Interval mean: 0. 7708266958667148 +/- 0.010574967498264262
Class: 3 Gredible Interval: mean: 0.768337B277027271 +/- 0.010182523722356002
Class: 4 Credible Interval mean: 0.7268789105474825 +/- 0.01109229917775889

Credible interval for overall accuracy mean: 0.B30B00BB45881881 +/- 0.012405342181754375

Fig. 9. Credible Interval Estimations



Time! Logistic Regression: Pre—Covid: 58.358317664173584 seconds
Accuracy: 0.57150379153506
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Fig. 11. Beta distribution for Pre-Covid base model (Logistic (bootstrap aggregation)
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Time: Random Forest: Bootstrap Agoresation: Post—Covid: 3.3540687361033156 seconds
Accuracy 0.627939142461964
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Beta Distribution: a = 1817.0, b = 1077.0
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Fig. 14. Beta distribution for during-Covid Random Forest
(bootstrap aggregation)
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