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Abstract—Most employees started to work from

home due to social-distancing measures imposed by

public health authorities to help prevent workplace

exposure at the beginning of COVID-19 pandemic.

As a result, gridlocked roads emptied out, and the

congestion declined very sharply [1] . In order to

predict accident-induced congestion severity levels, I

utilized a huge US accident dataset of 1.5 million

observations. Next, I predicted the accident severity

classes using Random Forest (RF) Bootstrap Ag-

gregation, and heuristic Support Vector Machine

(SVM) - one-vs-one and one-vs-rest - after feature

selection analysis (correlation coefficients and mutual

information criteria). I then assessed the performance

of classifiers through credible interval determination

and binomial significance tests. The RF (bootstrap ag-

gregation) outperforms both the base model (logistic

regression) [2] , and heuristic SVM in terms of overall

prediction accuracy, and confusion matrix metric.

The study also demonstrates that traffic accident-

induced congestion has been less severe than pre-

pandemic levels.

I. DATA

The data ‘US-Accidents’ is a countrywide traffic

accidents dataset that covers 49 states of the US

[3][4]. The dataset was collected over a period of 4

years (2016-2020) using multiple APIs that stream

real time traffic events captured by a variety of

entities such as the US Department of Transporta-

tion, and law enforcement agencies through traffic

cameras and traffic sensors.

The original dataset has 47 attributes that can

be categorized under traffic (severity, accident start

time, accident end time & distance affected); geog-

raphy (street, city, county, zip code, state); weather

(temperature, wind, humidity, pressure, and precip-

itation); Point of Interest (POI) such as cafes and

train stations; and time of the day (sunrise, sunset,

civil twilight, nautical twilight, and astronomical

twilight).

In this study, accident-induced congestion sever-

ity classes (low:2, medium:3 & high:4) were the

target variable while the rest of variables were used

as feature variables. After encoding all categorical

variables into one-hot numeric array, I generated

207 variables for subsequent feature selection.

II. FEATURE SELECTION
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I implemented a feature selection method to

reduce the number of features in ’US-Accidents’

https://www.kaggle.com/sobhanmoosavi/us-accidents
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Fig. 1. The Process of constructing US-Accidents Dataset[3]

dataset before predicting accident severity classes.

In order to reduce the computational cost of pre-

dictions, and improve the performance of the clas-

sifiers, I used a statistical-based feature selection

method that involves understanding the relationship

between each feature and the target variable. I

selected the features that had the strongest rela-

tionship with the target variable based on Pearson’s

Correlation matrix and mutual information (infor-

mation gain) from the field of information theory.

A. Correlation Matrix

I used Pearson’s Correlation method for the

900,000 observations retained after the data cleanup

procedure explained in [2] to understand the rela-

tionship among numerical features. I selected the

predictor features using the following Pearson’s

correlation threshold:

X = {Xk such that |corr(Xk, y))| > 0.05

where k ∈ {1, 2, 3, · · · ,K}}

B. Mutual Information

While Pearson’s Correlation coefficient can

quantify linear relationships, it fails to describe

the dependence among variables that are related

in a nonlinear sense. Therefore, I used information

theory concepts like mutual information to explain

the dependence among variables.

Let (X,Y ) be a pair of random variables with

values over the X × Y . Let PX,Y be the joint

distribution and PX and PY be the marginal dis-

tributions. Mutual information is a measure of

dependence that quantifies the statistical distance

between the joint distribution of supposedly depen-

dent variables and the product of their marginals,

hence quantifying the mutual dependence between

two variables. The formula for mutual information

is given below:

I(X;Y ) = DKL (PX,Y ∥PX ⊗ PY )

Finally, I selected 29 features that share high

mutual dependence with the target variable for

predictive modeling.

III. MODELS
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A. Random Forest [Bootstrap Aggregation]

Random Forest (bootstrap aggregation or bag-

ging) is ensemble machine learning algorithm that

is superior to bagged decision trees. I carried out
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sampling with replacement to reduce the variance

of the forest (multiple decision trees) without in-

creasing the bias. The RF algorithm showed better

performance with 0.647 than logistic regression

with 0.589, SVM (one-vs-one) with 0.54, and SVM

(one-vs-rest) with 0.54. It also classified accidents

more accurately than logistic regression classifier

as shown in the figures below.

Fig. 2. Random forest versus base model (logistic regression)

B. Support Vector Machine [one-vs-one and one-

vs-rest]

Support Vector Machines (SVM) are designed

for binary classification problems. Therefore to

overcome the inherently binary nature of SVM

algorithm, heuristic methods (one-vs-one and one-

vs-rest) are used to split up multi-class [accident

severity classes: low(2), medium (3), high (4)]

into different binary classification problem. Unlike

one-vs-rest, one-vs-one splits the dataset into one

dataset for each class versus every other class. Both

heuristic SVM (one-vs-one and one-vs-rest) meth-

ods have achieved an overall accuracy of 0.554, and

performed poorly in comparison to RF and base

model (logistic regression) [2].

IV. STATISTICAL TESTS AND ALGORITHM

COMPARISON
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A. Credible Interval Determination

I computed the credible intervals of test accuracy

sampled from beta distribution (1000 samples) for

all classifiers.The 95% credible interval for test

accuracy is 60% to 1.2% for all classifiers. This

shows that the central portion of the posterior

distribution contains 95% of scores between these

two values. I also determined credible intervals for

the overall accuracy of producer’s accuracy of each

severity class classified by all algorithms: logistic

regression (base model) with 60% to 1.17%, RF

(bootstrap aggregation) with 65% to 1.18%, RF

(AdaBoost) with 66% to 1.2%, and neural network

(3 hidden layers and 50 hidden units) with 63% to

1.24%. It is demonstrated that RF (AdaBoost) has

the best overall accuracy.

B. Binomial Significance Test

Another statistical test based on target predictions

for independent test sets is binomial significance

test. Classifiers are compared to check if a new

classifier is better than the old one. I ran acci-

dent severity classifiers on a test set to compare

their accuracy scores. The following results show

the probability that the classifier B is better than

classifier A.
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TABLE I
PROBABILITY THAT CLASSIFIER B (ROWS) IS BETTER THAN CLASSIFIER A (COLUMNS). NEURAL NETWORK (3 HIDDEN

LAYERS & 50 HIDDEN UNITS)

Logistic Random Forest [BA] Random Forest [AdaBoost] Neural Network
Logistic Nan 0 0 0
Random Forest [BA] 1.0 Nan 0.116 0.975
Random Forest [AdaBoost] 1.0 0.997 Nan 1.0
Neural Network 1.0 0.033 0.0 NaN

V. DISCUSSION AND CONCLUSION
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Two machine learning algorithms: I developed

Random Forest (Bootstrap Aggregation) and heuris-

tic Support Vector Machines (one-vs-one & one-

vs-rest) based on feature selection analysis to pre-

dict accident-induced congestion severity classes in

49 U.S. states. Since the target variable (severity)

has imbalanced classes, confusion matrix for each

classifier is considered a more reliable evaluation

metric. In addition, a boolean ’pre-pandemic’ that

I used to identify traffic accidents before and after

February 2020 demonstrated that accident-induced

congestion has been less severe than pre-pandemic

levels. The study contributes to both methodologi-

cal frameworks for predicting imbalanced classes,

and the literature on the effect of COVID-19 pan-

demic on urban transportation networks.
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APPENDIX

Fig. 3. Random forest versus base model (logistic regression)

Fig. 4. Support Vector Machines (one-vs-one one-vs-rest)

Fig. 5. Pre-Covid base model (logistic regression) versus
Random Forest (bootstrap aggregation)

Fig. 6. Pre-Covid Support Vector Machine (one-vs-one one-
vs-rest)

Fig. 7. During-Covid base model (Logistic Regression) versus
Random Forest (Bootstrap Aggregation)

Fig. 8. During-Covid Support Vector Machine (one-vs-one
one-vs-rest)

Fig. 9. Credible Interval Estimations
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Fig. 10. Beta distribution for Pre-Covid base model (Logistic
Regression)

Fig. 11. Beta distribution for Pre-Covid base model (Logistic
Regression

Fig. 12. Beta distribution for Random Forest (boostrap aggre-
gation)

Fig. 13. Beta distribution for Pre-Covid Random Forest
(bootstrap aggregation)
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Fig. 14. Beta distribution for during-Covid Random Forest
(bootstrap aggregation)
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