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Bicycle infrastructure has been found to increase nearby residential property values. However, most evidence for
this economic impact is limited to a single city. This study investigates the pre- and post-treatment effects of
different types of bicycle facilities on the values of single-family and multifamily homes in 11 cities in the United
States from 2000 to 2019. We utilize a quasi-experimental approach with matching techniques and hedonic
models to track down the changes in the sales price of residential properties over time within an 800-m buffer of
bicycle facilities. We found a mixed impact of property value appreciation, depreciation, and no change in the
sales price by different types of bicycle infrastructure including on-street and off-street facilities on single-family
and multifamily residential properties across the 11 cities. Single-family and multifamily properties near off-
street-only facilities experienced appreciation in Los Angeles, Minneapolis, and Cleveland. Meanwhile, single-
family homes near on-street-only facilities tended to decrease their values in Columbus, Eugene, Philadelphia,
and Tucson, and increase only in Minneapolis. All properties within 800 m of both on-street and off-street fa-
cilities saw their values increase in Columbus and Minneapolis. However, we did not find a statistically signif-
icant effect of bicycle infrastructure on housing values in Portland, San Francisco, and Seattle. Findings from our
study will inform decision-making and planning for bicycle infrastructure while ensuring the equitable distri-
bution of these facilities and affordable housing for disadvantaged populations.

1. Introduction

Empirical research in urban planning, urban economics, and real
estate demonstrates the capitalized effect of various transportation fa-
cilities on property values. Much of the existing scholarship provides
empirical evidence that proximity to transportation systems such as
transit and bicycle infrastructure tends to positively influence housing
market values (Krizek, 2006; Liu and Shi, 2017; Welch et al., 2016).
These studies draw upon a hedonic analysis framework to capture the
monetary contribution of property structural characteristics (e.g., the
size of the property and number of rooms), neighborhood attributes (e.
g., built environment, demographic composition and socio-economics),
and other locational attributes such as distance to parks and central
business district (CBD) (Conrow et al., 2021; Mohammad et al., 2013;
Rosen, 1974), environmental pollution (Kim et al., 2003), and school
district performance (Clapp et al., 2008).

Many cities in the United States have been investing in their bicycle
infrastructure network to promote bicycle- and pedestrian-friendly
urban design and stimulate the local economy (Handy, 2005; Le et al.,
2019). Due to this strong focus on bicycle infrastructure investment,

several studies have focused on understanding the property value pre-
mium effects associated with bicycle facilities (Asabere and Huffman,
2009; Duncan, 2008; Mathur and Ferrell, 2013).

Previous literature shows that the influence of bicycle facility access
on housing sales prices in the continental United States is mixed and
varies based on the type of bicycle facility and residential property. Liu
and Shi (2017) found that the extensiveness of the bicycle network
significantly increased the sales price in Portland, OR. Meanwhile,
Welch et al. (2016) found that proximity to regional multi-use paths
increased property values while on-street bicycle facility was negatively
associated with the sales price in the same region. Off-street bicycle
facilities were found to increase residential housing values (Asabere and
Huffman, 2009; Lindsey et al., 2004; Parent and vom Hofe, 2013). These
studies found that properties located closer to greenway trails, green-
belts, and nature trails sold for a premium in Indianapolis, IN, San
Antonio, TX, and Cincinnati, OH.

Despite substantial evidence that some bicycle facilities are posi-
tively associated with sales prices of residential properties, the existing
literature has mainly focused on case studies in a single city, often
relying on cross-sectional data that makes it difficult to draw the causal
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link between bicycle infrastructure intervention and changes in housing
prices over time across cities characterized by different built environ-
ment, socio-economics, and local urban planning policies. In addition, a
limitation of prior studies is that while they account for the access to
bicycle infrastructure and its density within a short walking distance of
residential properties, they did not isolate the impact of each type of
bicycle facility (e.g., on-street bike lanes vs. off-street trails) on housing
market values.

This study aims to quantify the effects of bicycle facilities on home
values in 11 US cities. We hypothesize that the effect of different bicycle
facilities on residential property transactions varies across single-family
and multifamily residential properties, accounting for neighborhood
characteristics. To the best of our knowledge, this study represents the
first hedonic pricing analysis to isolate the differential impact of bicycle
infrastructure using a quasi-experimental design with data that spans
from 2000 through 2019 across different urban contexts. We found
mixed impacts of property value appreciation, depreciation, and no
change in the sales price of single-family and multifamily homes in the
11 cities. Single-family and multifamily residential properties near off-
street-only facilities experienced appreciation in Los Angeles, Minne-
apolis, and Cleveland. By contrast, single-family properties in closer
proximity to on-street-only facilities witnessed a decrease in sales prices
in Columbus, Eugene, Philadelphia, and Tucson while gaining value
only in Minneapolis. Additionally, all properties near both on-street and
off-street facilities sold for significant positive premiums in Columbus
and Minneapolis. We did not find a statistically significant effect of bi-
cycle infrastructure on housing values in Portland, San Francisco, and
Seattle. The results of this study will inform city planners of the effects of
bicycle facilities on housing, local economy, and finance, as well as
necessary measures to minimize negative impacts such as potential
gentrification in places where housing prices increase due to bicycle
infrastructure investments.

2. Background

Many studies investigated the determinants of housing market values
in relation to proximity to transportation infrastructure such as train
stations, bus stops, and bicycle facilities (Acton et al., 2022; S. Lee and
Golub, 2021; Mohammad et al., 2013; Shr et al., 2023). Urban eco-
nomics literature provides theoretical foundations for hedonic studies
on housing market values (Lancaster, 1966; Rosen, 1974). The studies
underpinned by urban economic theories suggest that residential
properties capitalize on accessibility to transportation infrastructure.
For example, the property value might increase with proximity to bi-
cycle facilities due to improved access to activity locations such as jobs
(Liu and Shi, 2017).

The existing evidence on the contribution of bicycle infrastructure to
residential properties is mixed across the United States, and it varies
based on the type of bicycle facility and residential property. For
example, Liu and Shi (2017) examined the impact of advanced facilities
including cycle tracks, buffered bike lanes, and bike boulevards on
single and multifamily residential properties from 2010 through 2013 in
Portland, OR. They found that proximity to advanced bicycle facilities
and the extensiveness of bicycle networks increase property prices.
Another study in Portland by Welch et al. (2016) revealed that closer
proximity to off-street trails like multi-use bike paths increases the
selling price of single-family and owner-occupied multifamily properties
while shorter distances to on-street bicycle facilities negatively influence
property values. This study suggests that the decrease in the sales price
of residential properties near on-street facilities could be attributed to
the nuisance caused by noise, air pollution, or congestion.

Many studies focused on a particular type of bicycle facility, such as
off-street trails. In Indianapolis, IN, Lindsey et al. (2004) showed that
greenway trails had a significantly positive impact on the sales price of
properties located within one-half mile of the trail. A study by Asabere
and Huffman (2009) in San Antonio, Bexar County, TX, revealed a
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similar property value premium by trails and greenbelts as people place
a higher value on scenic off-street paths with less noise and pollution
from traffic. In addition, Parent and vom Hofe (2013) found that prop-
erties located one thousand feet closer to nature trails sold for a premium
in Cincinnati, OH. By contrast, Krizek (2006) found that proximity to
non-roadside off-street bicycle facilities significantly reduces suburban
property values in Minneapolis-St Paul, MN. A more recent study by
Conrow et al. (2021) in Tempe, AZ, incorporated a ridership measure
into hedonic pricing models to estimate the economic effects of bicycle
infrastructure and found that bicycle network density is a more signif-
icant draw for homebuyers than the ridership volume. The differential
value uplift induced by proximity to bicycle facilities demonstrates how
the impact of various types of bicycle facilities such as off-street and on-
street facilities varies across single-family and multi-family properties.

Residential property values are also reflective of home buyer’s
perceived values of school district quality, neighborhood characteristics,
and environmental quality. Clapp et al. (2008) used panel data spanning
11 years to examine the impacts of school district quality on property
values in Connecticut, finding that student test scores have become more
prominent in explaining housing prices in recent years. Lynch and
Rasmussen (2001) found that properties in high-crime areas are highly
discounted. Other studies have also looked into the impacts of air
pollution such as ozone and particulate matter concentrations on
housing market values (Chay and Greenstone, 2005). Kim et al. (2003)
found that air pollution levels (i.e., sulfur dioxide from factory stacks
and coal-burning fireplaces) had a significant impact on housing prices,
with willingness to pay for a permanent 4% improvement in air quality
estimated at $2333 or 1.43% of mean home values in the Seoul metro-
politan area.

Previous studies have mainly employed multivariate hedonic
regression (Bartholomew and Ewing, 2011) and spatial econometrics
(Acton et al., 2022; Liu and Shi, 2017; Welch et al., 2016) to examine the
relationship between real estate valuation and accessibility to trans-
portation facilities. The hedonic regression model is a type of regression
model that explains the sales price as a function of property attributes (e.
g., age, lot size, and number of bedrooms), locational attributes (e.g.,
distance to the nearest park and central business district), neighborhood
attributes (e.g., density, socioeconomics, and demographics), bicycle
facility characteristics, and transaction characteristics. Spatial regres-
sion models are often adopted when property sales price exhibits a
systematic pattern in their spatial distribution, and therefore, are
spatially autocorrelated. These models capture the spatial dependency
effect in the association between the sales price of properties and
transportation infrastructure (Wilhelmsson, 2002).

The survey of existing literature on the property value premiums
associated with bicycle infrastructure demonstrates that most studies
rely on cross-sectional research design and transaction records that span
short timeframes in a single city (Table 1). Our study attempts to fill this
gap by bolstering evidence based on the economic benefits of bicycle
infrastructure with a quasi-experimental design to understand the im-
pacts of investments in bicycle infrastructure on residential property
values in 11 US cities from 2000 through 2019.

3. Data and methods
3.1. Study design

Covering 11 cities in the United States, this study evaluates the
changes in residential property sales prices from 2000 through 2019
(Fig. 1). The choice of study period was based on the availability of
bicycle infrastructure data from local planning agencies and Google
Earth imagery. We adopted a quasi-experimental design for the obser-
vational data from these 11 cities by splitting housing transaction sales
into two groups: a treatment group that includes properties located
within an 800 m buffer from the bicycle facilities, and a control group
that includes properties that lie outside the 1000 m donut buffer.
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Table 1
Summary of hedonic price studies of bicycle facilities.
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Study Location Bicycle facility Property Method Infrastructure measure and effects on
housing values (increase/ + or decrease/—
housing values)

Liu and Shi Portland, OR Cycle tracks, buffered bike Single-family and multi-family OLS and SAR (a) Distance to nearest bicycle facility (—)

(2017) lanes, bike boulevards
Welch et al. Portland, OR On-street bike lane, local multi-
(2016) use path and regional multi-use

properties (2010—2013)

Single-family and owner-occupied SAR
multifamily properties
path (2002—-2013)

(b) Bicycle facility density within 0.5 miles
of each property (+)
Distance to the nearest

(a) Multi-use path (+)
(b) On-street facility (-)

Conrow et al. Tempe, AZ On-street and off-street bike Single-family properties OLS and Density within 0.5 miles of each property:
(2021) facilities (2013-2016) spatial lag
model (a) On-street facility (+)
(b) Off-street facility (0)
(c) Ridership (0)
Krizek (2006) Minneapolis- St. On-street and off-street facilities ~ Urban and suburban properties OLS Distance to the nearest
Paul, MN (2001)
(a) On-street facility (0)
(b) Roadside off-street facility (+)
(c) Non-roadside off-street facility (—)
Asabere and San Antonio, TX Trails, greenbelts and Residential properties OLS Presence of bicycle facility (+)
Huffman greenways (2001-2002)
(2009)
Parent and vom Cincinnati, OH Trail Single-family properties (2005) OLS and SAR Distance between properties and trail (+)
Hofe (2013)
(Lindsey et al., Indianapolis, IN Greenway Residential properties (1999) OLS 0.5 miles from bicycle greenways (+)

2004)

Notes: (+): positive effect; (—) negative effect; OLS: Ordinary least square regression; SAR: spatial autoregressive regression.

® Seattle

@ Portland
@ Eugene

® San Francisco
@® Denver

@Los Angeles

® Tucson

@ Minneapolis

Cleveland @

Columbus @ @®Philadelphia

Fig. 1. Eleven US cities included in this study.

The 800 m buffer is the distance a person is willing to travel using
non-motorized modes, and it is consistent with previous studies exam-
ining the impact of bicycle facilities on residential property prices
(Conrow et al., 2021; Lindsey et al., 2004; Liu and Shi, 2017). We also
generated datasets of 400 m and 1200 m for sensitivity analysis. We
compiled variables of interest including socio-demographic composi-
tion, built environment, and locational amenities at the block group
level around the properties in the treatment and control groups in the 11
cities.

3.2. Data processing

We constructed a dataset that comprises transaction and physical
property characteristics, neighborhood built-environment characteris-
tics, and socioeconomic and demographic indicators. First, we obtained
Zillow’s assessment and transaction database, which contains

information about property characteristics such as building area, lot
size, year of construction, number of stories, and total number of rooms
from 2000 to 2019 (Zillow, 2023). The transaction database provides
information about the sales price and date of the transaction that
matches the assessment database’s time horizon. The Zillow transaction
database did not include short-term sales and foreclosures. In this study,
we considered all multifamily properties such as general multifamily
residential properties, duplexes (2 units), triplex (3 units), quadruplex
(4 units), apartment buildings (5+ units), apartment buildings (100+
units), garden apartments, or court apartments (54 units), high-rise
apartment, boarding house rooming house apartment hotel transient
lodging, mobile home park or trailer park, multifamily dwelling (generic
any combination 2+), fraternity house or sorority house, apartment
(generic), residential dormitory or group quarters, and residential con-
dominium development. Sales price transactions were adjusted for the
square footage of transacted properties.
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The data was subsequently cleaned to eliminate duplicates and
eventually resulted in a unique hedonic dataset for single-family and
multifamily properties. The resulting sales price transactions contained
repeat sales since each property was observed twice in the housing
market.

The bicycle infrastructure database was internally created using
different sources for another project (Le et al., 2018, 2019). This dataset
was constructed based on the data availability of bicycle traffic count,
city size (i.e., small, medium, and large cities), and the availability of
shapefile data for bicycle facilities provided by the local planning
agencies. We downloaded bicycle infrastructure networks for each city
from local agencies’ data portals. In cities where the year of construction
for the bicycle facilities was unavailable (which is the case in most cit-
ies), we relied on Google Earth historical satellite images and Google
Street View to get the year of construction. This information was used to
create a longitudinal bicycle network by year from 2002 to 2020. Next,
we coded the bicycle facilities and aggregated bike lanes, cycle tracks,
contraflow bike lanes, and buffered bike lanes into on-street bicycle
facilities, and trails and shared-use paths into off-street bicycle facilities.

We created a 3-km buffer around city-wide bicycle networks to
extract candidate sales records for each city for the hedonic analysis.
Properties located within a 3 km catchment were further split into
treatment and control groups based on the type of bicycle infrastructure.
The bicycle facilities were categorized into on-street bicycle facilities
(bike lanes, cycle tracks, contraflow bike lanes, and buffered bike lanes)
and off-street bicycle facilities (trails and shared-use paths). We retained
properties that were sold two times over 20 years (2000-2019) by
selecting sales transactions that occurred immediately before and after
bicycle facility construction.

The distance between the location of each residential property and

Table 2
Variables included in the difference-in-differences hedonic models.
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the nearest park was calculated using the osmdata and sf packages in R.
To calculate the distance to park variable, we identified the parks that
are closest to residential properties and then calculated the distance
between the nearest park and residential properties.

We used the socioeconomic and core demographic characteristics
from the 2000 US Decennial Census as well as the American Community
Survey (ACS) 5-year estimates (2009-2013 and 2016-2020) at the block
group level. The time horizon was selected to facilitate comparison
across non-overlapping values and estimates.

To incorporate built environment indicators into the hedonic data-
set, we drew on the Smart Location Database managed by the US
Environmental Protection Agency (US EPA, 2023) which provides key
built environment indicators for density, land use diversity, built envi-
ronment, access to destinations, and distance to transit at the census
block group-level. Important neighborhood attributes from the Smart
Location Database include gross population density, gross employment
density, jobs per household, multimodal street network density, distance
to the nearest transit stop, jobs within 45-min auto travel time, jobs
within 45-min transit commute, and national walkability index value
between 1 (lowest walkability) and 20 (highest walkability). We
incorporated gross population density and multimodal street network
density variables that were highly correlated with the sales price of
properties into the final model. Additionally, we derived the distance to
the CBD by identifying the census block group with the highest
employment density of each city, and then calculated the distance from
each residential property to the centroid of this block group.

Finally, each residential property was assigned spatially the built
environment features and socioeconomic and demographic character-
istics for the block group in which it was located. Two key binary var-
iables were constructed for on-street and off-street facilities to isolate the

Variable Description

Year Source

Transaction characteristics

Sales price Natural log of sales price

After Dummy for treatment time; 1 if after bicycle facility, O otherwise
Dummy for bicycle facility; 1 if one type or all bike facilities are present within the 800 m buffer (i.e., treatment

Bike group), 0 otherwise.

After*On-street
After*Off-street

After*All facilities . .
time) and time

Property attributes

DID interaction between the treatment group (for on-street only) and time
DID interaction between the treatment group (off-street only) and time
DID interaction between the treatment group (for double treatment with on-street and off-street facilities at the same

2000-2019  ZTRAX
2000-2019  Derived

2000-2020  Derived

2000-2019  Derived
2000-2019  Derived

2000-2019  Derived

2000-2019  ZTRAX

Building area

Age

Number of stories

Total number of rooms
Total number of bedrooms
Lot size

Locational attributes

Distance to CBD

Distance to nearest park

Distance to nearest bike
facility

Neighborhood attributes
Population density

Street network density
National Walkability index

Percent Black
Percent Hispanic

Median household income

Building square footage

Age in years at time of sale

Number of stories of property

Total number of rooms per property
Total number of bedrooms per property
Square footage area

Distance to CBD in km
Distance to nearest park in m

Distance to nearest bike facility in m

People/acre
Multimodal street network density
Value between 1 (lowest walkability) and 20 (highest walkability

Percent population Black in block group
Percent population Hispanic in block group

Median household income in block group

2000-2019 ZTRAX
2000-2019 ZTRAX
2000-2019  ZTRAX
2000-2019  ZTRAX
2000-2019 ZTRAX
NA Derived
NA Derived
NA Derived
2017 SLD
2017 SLD
2017 SLD
Census,
2000-2020 ACS
Census,
2000-2020 ACS
Census
2 —-202 ?
000-2020 ACS

Notes: ZTRAX: Zillow Transactions & Assessor; SLD: Smart Location Database; ACS: American Community Survey.
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Table 3
Mean of the dependent and independent variables.
Variable Cleveland  Columbus  Denver Eugene Los Minneapolis  Philadelphia  Portland  San Seattle Tucson
Angeles Francisco
Transaction characteristics
Sales price 88,570 134,713 343,436 224,370 667,839 238,469 167,664 321,773 1,155,650 588,535 213,354
Property attributes
Building area 1650 962 1625 1126 2346 1547 1743 1733 2208 2115 1750
Age 82 52 63 33 72 83 66 67 76 69 26
Number of stories 1.77 1.54 1.35 1.26 1.53 2.12 1 1.63 1.40 1.09
Total number of rooms 7
Total number of bedrooms 3 3 3 3 4 3 3 2 3
Lot size 6361 12,150 6211 8371 6496 5744 3487 6364 2806 5643 12,890
Locational attributes
Distance to CBD 8.5 9.14 8 5.1 9.44 5.66 12 8.57 7 7.48 12.75
Distance to nearest park 652 562 481 440 674 398 496 466 339 381 2297
Distance to nearest bike - 5, | 491 383 365 626 248 303 195 194 231 295
facility
Neighborhood attributes
Population density 11.82 9.6 13.11 7.25 26.11 14.45 29.33 13 40 15.74 6
Street network density 3.2 4.2 3.0 2.76 4.58 2.4 11.29 2.03 4 0.73 3.02
Percent Black 28 22.5 10.5 0.9 12.4 15 22 6.2 5.8 5.8 2.7
Percent Hispanic 45 56.7 48.2 62 49.14 42.76 65 44.3 50 46.9 55.4
Nigg:jl walkability 12,92 11.88 14.26 12.41 14.6 14.4 14.55 15.74 16 15.34 10.58
Median household income 38,937 48,580 65,529 52,046 50,954 62,632 43,121 62,630 91,292 80,276 53,550
Number of observations 25,230 37,588 60,447 16,825 37,810 43,980 21,861 31,353 20,676 41,278 103,061

pathway between treatment (bicycle intervention) and outcome (sales
price): (1) before and after the installation of a bicycle facility, (2) the
presence or absence of bicycle facility (location). Table 2 and Table 3
present the descriptive statistics of variables included in the hedonic
pricing model.

We created a donut buffer that separates the treatment and control
groups. Specifically, for the 800 m buffer analysis, we now consider the
treatment group any homes within 0-800 m from the bike facilities, and
the control group any homes within 1000-3000 m (i.e., discarded homes
within the donut buffer). We used the same approach throughout the
sensitivity analysis at 400 m, 800 m, and 1200 m buffer distances to
spatially isolate the control group from the treatment group at a 200 m
distance. We have considered the presence of only on-street facilities,
only off-street facilities, or the presence of both on-street and off-street
facilities (captured in the “all facilities” variable in the model). This
means, the DID values capture the effect of on-street-only facilities on
property values relative to off-street-only facilities or the presence of
both on-street and off-street facilities.

To account for the overlapping treatment of on-street and off-street
facilities, we identified properties that were simultaneously (i.e., dur-
ing the same time) and sequentially (i.e., either the on-street was con-
structed first or the off-street facility) double-treated for both on-street
and off-street facilities to estimate the effect of double treatment on
changes in the sales price of properties.

3.3. Matching and parallel trend analysis

As we employ the quasi-experimental design and DID models, we
took extra steps to ensure that the assumptions for these approaches are
met. Here we discuss the two most important assumptions: parallel trend
assumption and random assignment to the treatment and control
groups. Parallel trend assumption which requires that in the absence of
treatment (i.e., bicycle facility intervention), the difference between the
treated group (i.e., properties near bicycle facilities) and the untreated
group (i.e., properties that did not receive bicycle infrastructure) stays
the same in the post-treatment period as it was in the pre-treatment
period (Nick, 2020). The parallel trend assumption prevents

unobserved and time-invariant characteristics from confounding the
treatment effects. We performed a test of prior trends on the pre-
treatment data to ensure the assumption of parallel trends was plau-
sible. The test of prior trends confirms if the treated and untreated
properties had differing trends before the treatment. The difference in
sales price between treated and control properties should stay the same
prior to the bicycle facility construction, implying that had the treatment
not occurred, they likely would have followed a similar trend path. A
prior trends test for the interaction between treatment time and group
(B, Time x Group — see SM Section 3) provides information about the
trends. If the trends are different and this interaction term is statistically
significant, it could mean the parallel trends assumption is violated.
However, if the trends are barely different, it could also be attributable
to our large sample size (Nick, 2020).

Relatedly, the quasi-experimental approach assumes that assignment
to bicycle facility intervention (treatment) is as if random since, unlike
the gold standard randomized controlled trials, we did not directly
assign residential properties to treatment and control groups (Hariton
and Locascio, 2018). We therefore used matching techniques to statis-
tically adjust for confounding factors that may affect the results of the
quasi-experimental design.

In the matching process, we used nine neighborhood attributes to
select observations with similar values of population density, employ-
ment density, distance to the nearest park, distance to CBD, multi-modal
network density, median household income, core demographic charac-
teristics such as percent Black and percent Hispanic, and walkability
index (Acton et al., 2022). We selected these neighborhood attributes to
find good counterfactuals since the residential context influences both
housing market values and access to bicycle infrastructure. Previous
research has shown that homebuyers value these neighborhood attri-
butes and they are often used for propensity score matching (Acton
et al., 2022).

We employed the standard nearest neighbor (NN) propensity score
method to match properties located within an 800 m buffer of a bicycle
facility with the control group that did not receive bicycle infrastructure
treatment with replacement (i.e., properties that have been matched
already can get another match). To pair up properties near bicycle
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facilities with similar control properties based on neighborhood attri-
butes, we used the Matchit R package (Ho et al., 2011). We chose nearest
neighbor matching for two reasons. First, the nearest neighbor matching
is preferable for large datasets that cannot be handled by optimal
matching. Second, we used nearest neighbor propensity score matching
with replacement which is superior to nearest neighbor propensity score
matching without replacement (Morgan and Harding, 2006), and this
approach allowed us to weight the control properties with nonuniform
weights that improved the balancing capabilities of our models (Greifer,
2023).

Only propensity score-matched transactions were included in the
final hedonic model. Propensity score statistics such as standardized
mean difference (SMD), variance ratio (VR), and empirical cumulative
density function (eCDF) were used to identify imbalanced covariates
across all study areas. SMD and eCDF close to 0, and values of variance
ratios close to 1.0 indicate a good balance (Greifer, 2022). Density,
median household, distance to amenities, and demographic covariates
were mainly balanced in most cities. The lack of balance for some
covariates could be attributed to the larger number of neighborhood
attributes selected to characterize each census block group, and the
smaller number of observations that resulted from isolating the effect of
each bicycle facility intervention (e.g., on-street facility, off-street fa-
cility and double treatment across city-wide bicycle network).

3.4. Spatial difference-in-differences hedonic models

We estimated a set of 11 spatial difference-in-differences (DID)
models to evaluate the impacts of bicycle infrastructure on property
prices for each city. While estimating one single model for all cities
would be ideal, we were unable to do so as the sample sizes are very
large, which posed a great barrier to estimating spatial models that are
computationally intensive.

Our model choice follows several steps. First, we estimated a set of
OLS models and performed diagnostic tests on the residuals. We tested
for spatial autocorrelation on the residuals using Moran’s I (Moran,
1950) for 3 to 6 neighbors to specify the weights matrix (Table S1 in the
Supplemental Material - SM). The Moran’s I test indicated that there was
statistically significant positive spatial autocorrelation in the residuals of
the OLS model (p < 0.0001). We subsequently conducted Lagrange
multiplier tests to select the appropriate spatial models to capture this
spatial dependency. The robust Lagrange multiplier test showed that the
spatial error model was more appropriate. This model is designed to
capture the spatial dependence in the error component of the regression
model.

For the final spatial models, we specified the spatial weight matrices
using the k-nearest neighbors method (k = 3, as a higher number of
neighbors yielded similar results). This means the sales price of the three
nearest properties had a bearing on the property values of any particular
home. The spatial error DID models control for a category of control
variables including neighborhood features and locational attributes, as
well as the group differences (treatment vs. control groups) and time
differences (pre- vs. post-treatment period) (Card and Krueger, 1994).
With the natural log of sales price of residential properties as the
dependent variable, the specification of the spatial error DID model is as
follows:

In(Py) = By + p1Hie + B,Ni + psL; + p, Yeary + y, (On street*After),,
+ 7, (Off street*After),, + y5(All facilities*After), + AWe; + p;,

Where:

P;; = sales price of property i at time t.

Hij: = structural characteristics of property i at time t (e.g., age, size).

N; = neighborhood attributes of property i (e.g., demographics, built
environment).

L; = locational amenities of property i (e.g., distance to the CBD,
green spaces, etc.)
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Year;; = indicator variables for the years of property transactions (i.
e., from 2000 through 2019).

On street; = a binary variable with a value of 1 if property i is within
800 m from on-street bicycle facilities and O otherwise.

Off street; = a binary variable with a value of 1 if property i is within
800 m from off-street bicycle facilities and 0 otherwise.

All facilities; = a binary variable with a value of 1 if property i is
within 800 m and treated for both on-street and off-street bicycle fa-
cilities at the same time and O otherwise.

After; = a binary variable with a value of 1 if the transaction of
property i occurred after the bicycle facility was built and 0 if before.

A = spatial error parameter.

W, = spatially lagged error term.

j = error terms.

The coefficients for y from the DID terms indicate how much bigger
the sales price gap between treatment and control properties has grown
after bicycle facilities were built. In each city, we separately estimated
two DID hedonic models for single-family and multifamily properties
accounting for three types of bicycle-facility interventions: on-street
facilities (i.e., presence of only on-street facility), off-street facilities
(presence of only off-street facility) and all facilities (i.e., double treat-
ment where a home is close to both types of facilities at the same time).
As a result, we estimated three DID terms (i.e., on-street, off-street, and
all facilities) for three types of bicycle infrastructure intervention across
single-family and multifamily properties in 11 cities.

We estimated two models: one with all transactions for each house so
houses being transacted twice during the study period will be entered
twice in the model and another model with houses being transacted once
during the study period (i.e., removing any transactions in between). We
kept the former model as the main model and used the other one for
robustness checks.

Additionally, we tested models with normalized sales price of both
single-family and multifamily properties to the base year 2000 to ac-
count for inflationary and deflationary periods. We also ran a separate
set of models to estimate the impacts of bicycle facilities on the sales
price per square foot for selected cities where we found that bicycle
infrastructure had significant impacts on housing market values. To
further probe the spatial heterogeneous treatment effect of bicycle fa-
cility interventions, we carried out a sensitivity analysis at 400 m and
1200 m buffer distances in addition to the 800 m buffer distance in the
main models. Our hedonic models accounted for the changes in the sales
price for the same property between the two sale times before and after
bicycle facility construction and therefore similar to repeat-sales models
which are common in real estate economics and urban economics
(Harding et al., 2007; Lee et al., 2018).

3.5. Estimated tax revenue changes with infrastructure investment

We also calculated changes in annual property tax revenues per
home as a result of bicycle facility construction. We used the mean sales
price of property transactions from the Zillow transactions database,
changes in home values from our DID models, and the average property
tax rate from the Zillow Property Tax Calculator in 2021 (Zillow, 2021).
We specified the changes in property tax revenue in city i as follows:

Change in tax revenues; = mean sales price; x change in home value;
X average property tax rate;

Where:

mean sales price; represents the mean sales price of single-family or
multifamily properties in city i.

change in home value; represents the effect size of each type of facil-
ity. The effect size is y, for on-street-only facilities; the effect size is y, for
off-street only facility; and the effect size is y; for both on- and off-street
facilities (double treatment), with y from the hedonic model in Section
3.4.
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property tax rate; represents the average property tax rate in County
areas for city i.

The tax rates for property in each city were estimated by Zillow and
contained state, school district, and city taxes.

4. Results
4.1. Parallel trend analysis

Fig. 2 illustrates a varying difference between the average sales
prices of residential properties in the treatment and control groups
depending on the type of bicycle facility across all 11 cities. Parallel
trends show that properties in the treatment and control groups are
comparable except for those in Cleveland and Columbus, suggesting that
these cities are likely to violate the parallel trend assumption of DID.
This means the DID results for these should be interpreted with caution.

We found that the control and treatment properties trend in the same
direction and at the same rate years before the treatment went into effect
in most cities except Cleveland, Denver, and Tucson, suggesting that a
parallel trend is unlikely to hold in these cities and the only reason we
would see the divergence of the trends is not because of the treatment
itself (see Table S3 in the SM). Similarly, changes in the sales price of
properties in Columbus should be interpreted with caution due to the
presence of unparalleled trends. In cities where the parallel trend
assumption holds, we have a plausible causal effect because control and
treated properties would have followed parallel trends without bike
facility intervention. However, it is also important to consider the
context in those cities and account for the other developments that
might have happened during the study period.

4.2. Impacts of bicycle facilities on sales price

From our DID model results, the impact of bicycle infrastructure
varied by type of facility, property, and across cities, with on-street, off-
street, and the presence of both on-street and off-street facilities having
varying degrees of influence in terms of the magnitude and direction of
the impact. Fig. 3 and Table 4 provide the impact of bicycle facilities on
single-family properties.

The effect of bicycle facilities on single-family properties was mixed
in the 11 cities (Fig. 4). Proximity to on-street facilities was associated
with single-family property appreciation only in Minneapolis (5.1%),
depreciation in Columbus (4%), Eugene (7%), Philadelphia (10%), and
Tucson (1%). We found no statistically significant impacts in Cleveland,
Denver, Los Angeles, Portland, San Francisco, and Seattle.

Closer proximity to off-street facilities led to single-family home value
appreciation in Los Angeles (3%) and Minneapolis (7%), whereas it led
to depreciation in Columbus (2%), Denver (4%), Eugene (10%), and
Tucson (2%). We found no statistically significant impacts of off-street
facilities on single-family properties in Cleveland, Portland, San Fran-
cisco, and Seattle.

With respect to single-family properties near both types of facilities, we
found that the sales price of properties increased by approximately 6%
in Columbus and 25% in Minneapolis. However, single-family properties
near both on-street and off-street facilities decreased by approximately
10% in Eugene and 3% in Tucson, and there was no effect for the rest of
the cities.

As for multifamily properties, Fig. 5 and Table 5 depict mixed im-
pacts of property value appreciation, depreciation, and no change in
sales price. Properties within 800 m of on-street facilities experienced an
increase in sales price in Cleveland (9%), and a decrease in Los Angeles
(4%) and Philadelphia (17%) while we found no statistically significant
impacts of on-street facilities in Columbus, Denver, Minneapolis, Port-
land, San Francisco, Seattle, and Tucson.

Regarding multifamily properties near off-street facilities, only prop-
erties in Cleveland witnessed an increase of 14% in sales price while
properties in Los Angeles experienced a decline of 12%. Additionally,

Journal of Transport Geography 123 (2025) 104146

off-street facilities in Columbus, Denver, Minneapolis, Portland, San
Francisco, Seattle, and Tucson exhibited no statistically significant effect
on multifamily properties. Moreover, Fig. 6 illustrates that multifamily
properties with both on-street and off-street facilities appreciated nearly
22% in Columbus and 20% in Minneapolis while properties in Los
Angeles depreciated approximately 21%. We found no statistically sig-
nificant effect for multifamily properties with both on-street and off-
street facilities for the rest of the cities.

4.3. Impacts of property and neighborhood attributes on sales price

The coefficients of most property attributes and neighborhood fea-
tures were statistically significant, albeit varied in magnitude and
impact. As expected, most estimates for property structural character-
istics were positively and significantly associated with the housing sales
price. For instance, the sales price increases with the building’s square
footage, number of stories, and number of bedrooms, and decreases with
the age of the property. However, in multifamily property models, the
sales price was negatively associated with lot size in Minneapolis,
Portland, and Los Angeles. Multifamily property values also declined as
the total number of bedrooms increased in Columbus, Cleveland, and
Portland. With respect to neighborhood attributes, the model estimates
revealed that homebuyers paid a premium for properties in walkable
neighborhoods with closer proximity to amenities in the central business
district in most cities. By contrast, for each additional kilometer a single-
family property was located away from the CBD, the house sold for a
significant premium in Columbus, Minneapolis, Cleveland, Portland,
and Los Angeles. Multifamily properties located farther away from the
CBD also sold for a significant premium only in Columbus and
Minneapolis.

When it comes to accessibility to bicycle facilities, the sales price of
single-family properties increased with distance from bicycle facilities in
Eugene, Seattle, Portland, and Los Angeles. By contrast, the closer the
multifamily properties were to bicycle facilities, the larger the price
premium in Columbus and Cleveland. In terms of the socio-demographic
composition of neighborhoods in which properties were located, results
suggest that an increase in the percentage of Blacks and Hispanics was
negatively associated with the sales price of properties in all cities except
Eugene and Denver respectively.

4.4. Robustness check and sensitivity analysis

Regarding robustness checks for properties treated for both on-street
and off-street facilities, we compared the first model of properties being
transacted twice (i.e., the main model in Section 4.3) with the second
model with only most recent transactions per property. The comparison
model was similar to our core model in terms of the direction of effect
except Denver where bicycle facility interventions resulted in positively
significant effects on single-family properties (see Figs. S2-S3 in the SM).
However, the magnitude of the effects was slightly lower in the com-
parison models. Most bicycle facilities had no impact on housing market
values in the comparison model for multifamily properties. While this
approach does not entirely address the double treatment issue (e.g.,
when a home is in a neighborhood with fast growth in cycling facilities),
it gave us more confidence in the results of the main models.

With respect to the normalized sales price, while the results are quite
similar to the main model results, modest decreases and increases in the
sales price of single-family properties in Columbus, Minneapolis, and
Eugene were very close to our estimates in the core models (See Fig. S8
and Fig. S9 in the Supplemental Material). We also found that multi-
family housing market values slightly declined. However, there is no
significant gap in the magnitude of the effect between normalized and
non-normalized property values.

Regarding sales price per square foot, we found no major differences
in the effects of bicycle values on sales price per building area square
foot compared to the main models (i.e., with home sales price as the



Table 4

Single-family Difference-in-differences hedonic model results*
Variable Cleveland Columbus Denver Eugene Los Angeles Minneapolis Philadelphia Portland San Francisco Seattle Tucson
Transaction characteristics
After*on-street —0.005 —0.04** 0.00007 —0.07%** 0.0012 0.05%** —0.11* 0.007 0.025 —0.007 —0.012%*
After*off-street 0.03 —0.02* —0.04%** —0.11%** 0.03* 0.07%*** 0.025 0.04 —0.017 —0.017%**
After*all facilities —0.06 0.06* 0.01 0.003 0.2 0.045 —0.08 —0.008 —0.03*
After 0.02 0.13%** —0.002 0.011 —0.0 0.14* —0.04%** —0.0005 0.03*** 0.006
On-street 0.03* 0.02* —0.01* 0.006 —0.03* —0.47%** —0.006 0.002 —0.0003 0.003
Off-street 0.03* 0.02* 0.014* —0.008 —0.05%** —0.033* 0.02 —0.0001 0.004
All facilities —0.07 0.14** 0.11%** —0.2%** —0.23%** —0.14* 0.25 0.08** —0.1%**
Property attributes
Building area 0.0003*** 0.0006*** 0.0004** 0.0001*** 0.0004*** 0.0004*** 0.0003*** 0.0003*** 0.0002%** 0.0003*** 0.0005%**
Age —0.009%** —0.001%** 0.000004 —0.003*** 0.0004 —0.002%** —0.002%** 0.0011%** 0.0003*** —0.0002%** —0.002%**
Number of stories 0.2%** 0.38%** 0.014* 0.13%** 0.06%** —0.011 0.10%** 0.04** 0.13%** —0.0!
Total number of rooms —0.013
Total number of bedrooms 0.008 0.025%** —0.03*** 0.09%*** —0.04%** 0.02%* 0.01* 0.0002
Lot size 0.000003** -1E-10 0.000001 0.00002%** 0.00001*** 0.00002%** 0.000001 0.00005*** 0.000002***
Locational attributes
Distance to CBD 0.014%** 0.02%** —0.04*** 0.02%** 0.08%*** 0.005* —0.009* —0.09%** —0.002**
Distance to nearest park —0.00004** —0.00006* —0.00008** 0.00001 —0.00002 0.00004 0.00005* —0.00003 0.000008%**
Distance to nearest bike facility —0.000005 —0.00001 0.0002%*** 0.00005** 0.00003 0.00003 0.00006* —0.00004 0.00008*** —0.00008***
Neighborhood attributes
Population density —0.005%** 0.006%** —0.002%* 0.009%** —0.008%** 0.003%** —0.00007 —0.0032** —0.001* 0.003%** —0.014%**
Street network density —0.0007 —0.03%** * —0.013%** —0.0065* 0.002 —0.013%** —0.02%** —0.003* —0.02%** —0.002*
National walkability index 0.02%** 0.03*** 0.03*** —0.009%** 0.02%** 0.035%** —0.006 0.02%** 0.005 0.03*** —0.002*
Percent Black —0.7%%* —0.78%%** —0.3%** 0.52%* —0.88%*** —0.85%** —0.73%%* —0.36%** o —0.73%** —0.43%**
Percent Hispanic —0.03 —0.32%** 0.02** —0.2%** —0.065%*** —0.08** —0.0006 —0.15%** —0.1%* —0.10** —0.12%**
Median household income 8E-06*** 0.00001*** 3E-06%** 0.000001 *** 3.2E-06*** 3.4E-06*** 0.00001*** 0.000003*** 2.6E-06*** 1.4E-06*** 1.5E-06**
(Intercept) 10.5%** 9.76%** 11.28%** 11.36%** 10%** 10.97** 13.17%** 11.6%%* 11.3%%*
Lambda 0.46%** 0.52%** ¢ 0.58%** 457 * 0.44%** 0.5* *
n 19,082 26,349 23,681 37,862 26,361 16,875 39,633

All models control for the year dummies. Significance codes:

#%+p < 0.0001, **p < 0.001, *p < 0.05.
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dependent variable) (See Fig. S10 and Fig. S11 in the Supplemental Minneapolis.

Material). Similar to the core models of the study, the results show that
multifamily properties that were treated for both on-street and off-street
facilities appreciated more than single-family properties in Columbus
while the effect was slightly higher for single-family properties in

10

We performed a sensitivity analysis to check if the effects of bicycle
facilities on home values persist on a smaller or larger scale than the 800
m buffer size tested in the main models. Therefore, we estimated models
using the 400 m and 1200 m buffers as the cut-off for treatment groups
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Table 5
Multifamily Difference-in-differences hedonic model results.
Variable Cleveland Columbus Denver Los Angeles Minneapolis Philadelphia Portland San Seattle Tucson
Francisco
Transaction characteristics
After*on-street 0.09% 0.028 ~0.04 ~0.037* 0.02 ~0.18* 0.0003 ~0.03 0.08 ~0.01
After*off-street 0.13** 0.025 ~0.06 —0.13%%* 0.05 0.013 ~0.04 0.21 0.01
After*all facilities  0.02 0.2* ~0.23* 0.18%* 0.145 0.06 0.07
After ~0.09% 0.07 0.02 0.05%* ~0.02 0.2* 0.05 0.10 0.002 0.03
On-street ~0.009 0.008 0.02 0.035%* 0.05 —0.2* ~0.032 0.003 ~0.06 0.007
Off-street ~0.037 0.032 0.024 0.11%%* 0.02 ~0.05 0.02 —0.21*  —0.015
Al facilities ~0.04 0.25% ~0.16 ~0.06 —0.44 0.16 ~0.07
Property attributes
Building area 0.00012***  0.00005***  0.00004**  0.00005*** 0.0002%*  0.27%%* 0.00008***  0.00003***  0.00009  0.00008***
Age ~0.005%**  —0.002 ~0.0034*  —0.003%** -0.003***  —0.003***  0.0009 ~0.003** ~0.0001  —0.004*
Number of stories ~ 0.11* 0.08 0.4%%* 0.15%%* 0.17%%* 0.24%%* 0.07* 0.06 0.11
Total number of _0.05
rooms
Total number of ~0.05* 0.03%%* 0.014 ~0.0007 0.02%%% 0.008
bedrooms
Lot size 6.7E-07 6.3E-06** ~0.000012%**  —0.000002 ~0.00001**  0.00002 0.00005  0.000012%**
Locational attributes
Distance to CBD 0.007 0.02* ~0.06%* 0.002 0.04%* ~0.008* 0.011 ~0.068%*  —0.04*  —0.07*
Dl;:‘rrlice tonearest 4 0002%*  0.0002* 0.00003 ~0.00006* ~0.00002 0.00003 ~0.0001 ~0.000006  —0.0003  0.0002
Distance tonearest —_ n43174  _g0002%  —0.00003  0.00004 ~0.00006  0.001 ~0.0003 ~0.00009 ~0.0002  0.0005
bike facility
Neighborhood attributes
Population density ~ —0.00014  0.01%%* 0.004 0.004%%* 0.005%%* 0.0003 0.007 0.0005 0.001
Street network 0.006 ~0.012%%  0.04% 0.005* 0.0045 0.002 0.0009 ~0.013
density
National
walkability 0.023** 0.025% 0.05%* 0.012%* 0.02* 0.01 ~0.008 ~0.014 0.05* ~0.07*
index
Percent Black —0.55%** —0.97%%+ ~0.34* —0.34%%* 1 —0.98%* ~0.2 _1.we
Percent Hispanic ~ 0.06 —0.4 _0.24%%% —0.11%%* ~0.08 0.08 0.09 0.056
ijézlzt’usehom 0.00001***  4.3E-06**  1.1E-06 4.5E-06%* 1.4E-06* 5.2E-06***  9.3E-07 0.000002%*
(Intercept) 10.6%%* 13.7%%*
Lambda 0.43%**
n 5890 3530

All models control for the year dummies. Significance codes: ***p < 0.0001, **p < 0.001, *p < 0.05.

(see Figs. S4-S7 in the SM). We found that the effect of bicycle facilities
on property transactions at a 400 m buffer distance did not persist on the
same significance and magnitude level as the 800 m buffer distance for
core models. The closer the single-family property was to the bicycle
facility the smaller the magnitude of the effect was regardless of its di-
rection. Additionally, bicycle facilities had a significant impact on
property values in fewer cities compared to 800 m and 1200 m buffers.
The significant impacts of bicycle facilities disappeared for single-family
and multifamily properties in Columbus and Philadelphia within 400 m
distance. With respect to properties within 1200 m of bicycle facilities,
the positive effect of bicycle facilities on single-family and multifamily
properties increased with distance. For example, as the distance to bi-
cycle facilities increased (i.e., 1200 m buffer distance), properties in
Columbus and Minneapolis sold for a larger premium.

4.5. Estimating city tax revenue changes due to investment in bicycle
infrastructure

Results in Table 6 show substantial variations in the changes in
revenues from sales price transactions of single-family and multifamily
properties. The construction of bicycle facilities around single-family
properties boosted revenues from property taxes, leading to a $646 in-
crease in tax revenues in Minneapolis due to the presence of both on-
street and off-street facilities and $218 from the construction of off-

11

street facilities in Los Angeles. There was also a rise in tax revenues
from multifamily properties, with the lowest revenues being generated
by on-street facilities ($139) in Cleveland and the highest by the pres-
ence of both on-street and off-street facilities ($554) in Columbus. The
estimates revealed that, in Columbus, revenues from property taxes
received a boost only when on-street and off-street facilities were built
near single-family and multifamily properties at the same time while the
presence of either only on-street or off-street facilities decreased single-
family property tax revenues. Bicycle facility interventions in closer
proximity to single-family properties decreased property tax revenues in
Denver, Eugene, Philadelphia, and Tucson.

5. Discussion and conclusions
5.1. Summary of the results

This study investigated the differential impact of different types of
bicycle infrastructure such as on-street, off-street, and the presence of
both on-street and off-street bicycle facilities on single-family and
multifamily residential property values across 11 cities in the US from
2000 to 2019 using a quasi-experimental design with propensity score
matching and spatial hedonic pricing models. The findings from our
study were mixed. Single-family homes near on-street-only facilities saw a
positive change in prices only in Minneapolis; and negative changes in
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Table 6

Change in property tax revenues due to investment in bicycle infrastructure.

City Treatment type Tax rate (%) Change in home value (%) Mean sales price ($) Change in property tax revenues per home ($)
Single-fam Multi-fam Single-fam Multi-fam Single-fam Multi-fam
Cleveland On-street only 9.42 139
Off-street only 13.8 205
On- and off-street 2 N/A N/A 93,090 73,760 N/A N/A
Columbus On-street only -3.92 N/A -73 N/A
Off-street only 1.43 —1.98 N/A 130,730 174,952 -37 N/A
On- and off-street 6.18 22.14 116 554
Denver On-street only N/A N/A N/A N/A
Off-street only 0.42 —3.92 N/A 330,141 863,401 —54 N/A
On- and off-street N/A N/A N/A N/A
Eugene On-street only —6.76 N/A -117 N/A
Off-street only 0.77 —10.42 N/A 224,370 N/A —180 N/A
On- and off-street —10.42 N/A —180 N/A
Los Angeles On-street only 0 —3.63 N/A —318
Off-street only 1.16 3.05 -12.2 616,320 754,304 218 -1067
On- and off-street N/A —20.6 N/A —1798
Minneapolis On-street only 5.13 N/A 135 N/A
Off-street only 1.09 7.25 N/A 240,729 224,022 190 N/A
On- and off-street 24.61 19.72 646 482
Philadelphia On-street only 0.74 —10.42 —16.47 168,113 166,826 —130 —203
Portland On-street only
Off-street only 0.94 N/A N/A 313,738 526,697 N/A N/A
On- and off-street
San Francisco On-street only
Off-street only 1.18 N/A N/A 1,037,726 1,707,931 N/A N/A
On- and off-street
Seattle On-street only
Off-street only 0.77 N/A N/A 546,114 1,649,491 N/A N/A
On- and off-street
Tucson On-street only -1.19 -16
Off-street only 0.65 -1.69 N/A 206,107 732,852 -23 N/A
On- and off-street —2.96 —40

N/A: not available; bicycle facilities had no statistically significant impacts on property value.
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Columbus, Eugene, Philadelphia, and Tucson, consistent with a past
study (Welch et al., 2016). We found a null effect in Cleveland, Denver,
Los Angeles, Portland, San Francisco, and Seattle.

The closer a single-family or multifamily property was to an off-street
only bicycle facility in Los Angeles and Cleveland, the higher the selling
price of the structure. These results are consistent with findings from
past studies (Asabere and Huffman, 2009; Conrow et al., 2021; Lindsey
et al., 2004) in San Antonio, TX, Tempe, AZ, and Indianapolis, IN where
proximity to off-street bicycle facilities like trail and shared use path had
a significant and positive impact on property values. As for single-family
and multi-family properties with both on-street and off-street facilities,
Columbus, Los Angeles, Cleveland, and Minneapolis experienced an
appreciation whereas Eugene, Denver, and Tucson witnessed a decline
in the sales price for properties in closer proximity to both facilities. In
Los Angeles, however, multifamily properties with both on-street and
off-street facilities depreciated, unlike single-family properties.

Overall, while we found evidence that bicycle facilities have signif-
icant positive impacts on housing market values within an 800 m buffer
distance, the sensitivity analysis shows that being very close (e.g., at
400 m distance) from the bike facilities does not guarantee the highest
gain in housing value as compared to being 800 m or 1200 m away. It
could be the case that we have fewer homes within the 400 m buffer
distance and this low number of observations affected the model results.
In addition, there may be a potential local nuisance that may diminish
property values, suggesting that the nuisance effect could be relevant for
properties near bicycle facilities. It is also noteworthy to mention that a
larger sample of properties within a 1200 m buffer distance could be
driving the higher price premium associated with the presence of bicycle
facilities. Therefore, it is important to account for contextual factors
such as the presence of other amenities, traffic volume, speed limit, and
urban design that may influence the impacts of bicycle facilities on
property values at 400 m distance.

Overall, the effects of cycling infrastructure on home values varied
by infrastructure type and city, perhaps due to the cities’ different
cycling culture and investment, as well as other potential land use and
economic changes over the year. As for infrastructure, access to off-
street bicycle facilities acts as a signal of the quality of the built envi-
ronment and locational attributes, such as the quietness and accompa-
nied green space and water near the trails. On the other hand, on-street
facilities are abundant on major streets, which encourages buyers who
like cycling or value walkability and accessibility, but also discourages
buyers who are concerned about noise, traffic, and other nuisance
effects.

As for the city characteristics, major investment in infrastructure in
certain cities translated to increased home values. For example, the City
of Minneapolis added 76 miles of bike lanes between 2007 and 2013
(Fields et al., 2022) and bicycling increased by 58% between 2000 and
2010 (Levinson, 2015), resulting in a positive gain in home values in
places near bicycle facilities. Columbus and Cleveland also have made
significant investments in bicycle facilities (MORPC, 2024) and wit-
nessed an increase in bike commuting in recent years (Bike Bike Cleve-
land—working for safe streets, 2024). Meanwhile, cities with high
housing shortages and housing costs such as Portland and San Francisco
did not see increases in home values near certain types of bicycle fa-
cilities despite having a strong cycling culture.

Overall, the presence of bicycle facilities was associated with prop-
erty value appreciation, depreciation, and no impact in our study areas
over time. Yet it is unknown how long the effects will last, and whether
the negative effects will be reversed in the future with changes in cycling
infrastructure, investment, cycling activities, and attitudes. Most
importantly, the effect of bicycle facilities on property values in Cleve-
land, Tucson, and Denver should be interpreted with caution since the
test of prior trends on the pre-treatment data suggests that any de-
viations from the trend are not because of bicycle facility intervention
per se. Similarly, findings from Columbus should be interpreted with
caution due to the presence of unparallel trends. In the case of
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Philadelphia, we did not have the off-street facility data and we did not
weigh the presence of on-street facilities against off-street facilities
because we did not have data for off-street facilities in Philadelphia.
Additionally, there was a significant imbalance between the treatment
and control groups and this could be attributed to the strong negative
result.

The results of this study highlighted the importance of equitably
distributing bicycle facilities as exemplified by the negative association
of certain demographics, especially Blacks and Hispanics, with housing
market values. Previous research (Braun, 2021; Braun et al., 2019,
2023) showed that there is a disparity in access to bicycle paths and the
health benefits of cycling, with disadvantaged neighborhoods with
higher proportions of Black and Hispanic residents, and lower income
and educational attainment having disproportionately lower accessi-
bility to bicycle facilities.

Our property tax analysis shows that from a tax revenue standpoint,
cities will have financial gain by investing in bicycle facilities. Other
studies have shown that cycling is good for the local economy through
other channels such as boosting local sales (Blondiau et al., 2016; Volker
and Handy, 2021). Overall, our analysis lends support to existing find-
ings that cycling infrastructure can generate positive returns on invest-
ment for cities, and these tax revenues can be used to build new bicycle
facilities and maintain the old bicycle infrastructure. Of course, this
comes with a cost of potential gentrification effects, hence cities should
prepare for potential interventions such as tax assistance or affordable
housing for existing residents with low income.

5.2. Limitations and directions for future research

This study has some limitations. First, we did not cover many other
US cities of different sizes, which limits the generalizability of our
findings. Second, due to the lack of data, we did not control for school
district performance and traffic conditions which were found to have a
significant influence on the sales prices of residential properties. Third,
the DID approach did not allow an investigation of long-term trends
across multiple transactions — we only incorporated transactions that
were closest to the time the nearest bicycle facility was constructed.
Future studies could address the above issues and extend the analysis to
understand multiple bicycle infrastructure benefits such as safety,
health, home value, and local retail. Even though our study used a quasi-
experimental design that accounts for the presence of bicycle facilities
within a certain distance, it did not account for the city-wide bicycle
network connectivity and access to destinations. For example, the con-
nectivity and access to destinations in bike infrastructure networks of 1
mile will differ from the 20-mile system. Therefore, future research
could further explore the extent to which system connectivity influences
the relationship between housing transactions and the presence of bi-
cycle facilities within a certain distance.

We acknowledge the possibility of heterogeneous treatment effects
across space and time. It is noteworthy that the estimated effects of bi-
cycle facilities on home values were the averages taken over space and
time. For example, the effect of a new bicycle facility does not suddenly
drop to zero at a specific buffer (e.g., 400 m, 800 m, or 1200 m in our
case) or suddenly change at a specific time (e.g., 2018 or 2020). We also
did not consider local variables that could vary over time in a way that is
spatially correlated with bicycle facilities due to data limitations. More
specifically, the variables that might influence both bicycle facilities and
the housing market such as population density and street network
density were time-invariant in our model.

Our study did not consider the potential anticipation effect during
the project announcement phase (i.e., home values change in response
to a future project). While this announcement effect may be less com-
mon in bicycle infrastructure than it is in larger projects such as transit, a
future study could explore the role of the announcement effect in the
impacts of bicycle facilities on property values. Moreover, research
shows that proximity to greenspaces and parks commands housing value
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premiums (Piaggio, 2021). Future studies should consider quantifying
multiple (simultaneous) treatments such as greenspaces and bicycle
infrastructure on housing market values.

Our study area reflects some potential self-selection effects. We chose
these 11 cities in part because local planning agencies made the data
available, suggesting that these cities value cycling investment more
than average American cities. More representation from other cities,
especially in the Southeast, West, and North Central is desirable for
future research. In addition, decision-making on the investment and
construction of bicycle facilities often occurs at different levels of the
government beyond cities. Therefore, future studies could investigate
the impacts of bicycle facilities on property values at the county or
metropolitan statistical area level.

We also did not record the full date of bicycle facility construction
and therefore, we cannot infer the temporal impact within the same year
in our model. In addition, census geographies may change shape over
time throughout the 20-year study period. This issue may affect the
aggregation of results at the blog group level (i.e., the modifiable areal
unit problem) and thus may also affect the model estimates.

5.3. Policy implications

This study fills a gap by distinguishing itself with a quasi-
experimental design with data over a period of 20 years across multi-
ple urban contexts in the United States. Isolating the pre- and post-
treatment effects of different types of bicycle facility investment con-
tributes to understanding home buyers’ perceived value of nearby on-
street and off-street facilities which have a bearing on local tax reve-
nues through their influence on property prices.

Findings from this study have significant policy implications for the
local economy, equity, sustainability, safety, and health. First, the
increased property value associated with closer proximity to bicycle
facilities could help policymakers prioritize investment in certain types
of bicycle infrastructure that could lead to higher property tax revenues
via an increase in the sales price of residential properties. Second, pol-
icymakers need to ensure that bicycle infrastructure is equitably
distributed by prioritizing marginalized neighborhoods. At the same
time, investment in bicycle facilities in disadvantaged neighborhoods
should be coupled with affordable housing policies to avoid unintended
gentrification in the future since infrastructure provision in those com-
munities might appeal to those on the upper-end of the socioeconomic
scale. Investing in bicycle facilities in disadvantaged neighborhoods also
has the potential to advance health equity as cycling enhances cardio-
respiratory fitness through physical activities and improves air quality.
Third, the higher premium associated with bicycle facility interventions
around multifamily residential properties implies that investing in bi-
cycle infrastructure near multi-family housing has the potential to
encourage cyclists to move into these areas. Finally, findings from this
study could be transferable to other urban housing markets, and they
could be used as a tool to prioritize locations and types of facilities in
urban areas.
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